发布时间:2023-04-02 点此:32次
离心泵的工作原理是:离心泵靠内、外压力差不断吸入液体,依靠高速旋转获得能量,经压出室将部分动能转换为压力能,由排出管排出。离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。
由于离心泵的作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸水池中的液体在液面压力(大气压)的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。
根据设计规范离心泵入口管径≥出口管径,一般来说是大于的关系,这样可以防止汽蚀、泵抽空。如果是出口管径>入口管径那么会发生泵抽空引起离心泵的剧烈震动,以致损坏设备。
在直径相同的情况下,泵的吸入能力小于排出能力,而当吸入的液体少于排出的液体时,泵会产生抽空。
入口管线适当粗些可以减少吸入阻力,增加泵的吸入能力。因而泵的入口管线比出口管线要粗一些。
离心泵技术论文篇二 离心泵的管理和维修技术探讨 摘要:离心泵是机械装备制造业中比较通用的一种机械,广泛应用于社会生产的各个行业和部门。近年来,伴随着石油化工和国民经济的发展,对离心泵的安全可靠性能提出了更为严格的要求。
离心泵作为输送物料的一种转动设备,对连续性较强的化工生产尤为重要。
基于此,本文就离心泵的管理和维修技术展开分析与研究。 关键词:离心泵;管理;维修 中图分类号:C93文献标识码: A 引言 随着社会经济的快速发展及企业管理体制的不断改革,离心泵故障管理及维护受到了越来越多人们的关注,在我国现阶段,寻找离心泵馆长的维修技术已经成为一个新的课题,对离心泵进行良好的日常保养,完善设备的保养机制,是延长离心泵使用寿命的关键。 一、离心泵的基本构造 (一)叶轮。常见的离心泵结构中,主要有开式、半开式和闭式三种型式的叶轮。
开式叶轮仅有叶片,没有前后盖板;半开式类型的叶轮则是由后盖板和叶片组成;而闭式叶轮不但有叶片,还有前盖板和后盖板。在各泵体结构中,离心泵主要通过叶轮对液体做功,也是唯一的做功部件。 (二)泵体。
径向剖分式和轴向剖分式是两种普遍的离心泵壳体类型。离心泵中的单机泵壳体大多数为蜗壳式,多级泵壳体按径向剖分壳体划分成圆形和环形两种壳体类型。泵壳内腔呈现螺旋形是蜗壳式泵壳的主要特征。
(三)泵轴。泵轴主要是用来传递机械能,它是由联轴器和电动机相连,从而可以将电动机的转矩通过泵轴传送到叶轮。 (四)轴承。
离心泵的轴承多为滑动轴承,所以润滑剂要求就比较严格,常用透明油作为润滑剂。 (五)密封环。减漏环是密封环的另一种说法,在不同资料下可能显示有所不同。 (六)填料函。
填料函的主要作用是封闭泵轴和泵壳之间的狭小空隙,保证泵内水流和泵外空气不能相互泄露。主要构造是由填料、填料筒、填料压盖、水封环和水封管组成。 二、离心泵的基本工作原理 研究离心泵工作原理可为处理故障与制定预防措施提供技术依据。在通常情况下,离心泵就是利用物体离心力作用,来达到对液体物体完成输送的目的。
在离心泵工作前,须事先将泵内叶片间和贮液槽内充灌满流体,然后再启动离心泵开始正常运转,此时离心泵内的流体就会随着叶轮高速旋转产生离心力运动,并在叶轮中心向外周作径向运动,最后顺叶片流道进入到排出管内。同时泵内的原有流体被旋转甩出后,叶轮中心即形成了一个低压区,而暂处于高压区贮液槽的流体就会源源不断的被吸收到叶轮中心,再依靠叶轮高速旋转被甩出进入到排出管内,形成流体不间断的被吸入和排出的循环输送作业,从而实现离心泵连续不断地将液态物体抽出进行输送 三、离心泵常见故障处理措施 (一)离心泵排液不畅和排液后中断的解决措施 检查泵内气体是否处于真空状态,泵壳和入口管线内的流体是否全部注满,如果不是真空要立即排净空气,没有灌注满的要及时重新添加达到要求标准。检查泵内叶轮转速有无异常,发现叶轮表现出过低的转速时,要立即进行调整适当提速。检查入口滤网、底阀有无附着的杂物,有就须立即排除异物,避免再次发生堵塞;检查吸入侧管道连接处有无漏气,有就需及时排尽气体,检查吸入口淹埋深度是否太浅,调整合适位置避免异物堵上。
(二)离心泵运行中出现震动或异响的解决措施 检查离心泵的轴承情况及间隙大小,检查泵内油质清洁度和润滑程度,并进行逐一排除故障隐患。损坏轴承要及时进行更换处理,间距大的了要及时调整轴距到适当的位置;对已经污染了的油质要马上进行杂质清除,对润滑不到位的部件,要立即更换新的润滑油脂。至于对那些过高震动频率的,则应及时更换、调整离心泵的轴承、轮齿等部位。
(三)离心泵功率消耗太大的解决措施 检查叶轮与耐磨环、泵壳有无摩擦,而进行适度的修理。检查流液密度是否合适,轴承有无损坏,如果有就及时进行修理或者更换轴承,调整零部件。检查泵轴是否有弯曲,并及时矫正。
检查联轴器是否存在对中不良、轴向间隙太小,进而调整对中和轴向间隙到合适位置。 (四)水泵不能正常运转的解决措施 首先,检查离心泵的原动机运行有无异常,电源接入是否正确,如存在有原动机异常和电源接错的问题,须加以整改处理好;也可用手盘联轴器直接检测,如遇故障问题严重的,可通过拆解泵壳,观察泵体内有无被卡的现象。检查泵内系统的水头、净压头等部件磨损情况,对凡是发现有磨损的零部件应及时更换。检查叶轮的完好程度及叶轮之间的间隙,及时更换掉完好程度差的损坏叶轮,调整间隙大的叶轮间隙到合适的位置为止。
检查吸液槽的真空状态与吸入的高度位置,对没有排尽空气的要再排气,使吸液槽内达到真空状态,同时,对泵内系统的水头位置设置过高的,要重新调整。 (五)离心泵流量不足,扬程不达标的解决措施 导致离心泵的流量和扬程不够的主要原因为:叶轮的转速太低或叶轮的转动方向不对、泵吸入口串气、吸入口管线、滤网或叶轮堵塞、灌注不够、叶轮损坏、口环的间隙过大,漏损过大、吸入管中压力接近汽化压力、泵体内有气体。如离心泵在出现如下情况时,可采取下面的方法进行处理:①检查调整。
②检查入口管线法兰。③清理入口过滤器。④更换叶轮。⑤增加入口压力,提高灌注头。
⑥更换口环。⑦适当地增加入口压力,同时降低传输介质的温度。⑧放空排气或向有关系统卸压。
四、离心泵的管理和维护的优化策略 现代工业系统中,离心泵的适用范围从基本的生活需求到石油化工行业都有广泛涉及,不但用来输送水,而且还用来输送石油等其他不同性质的液体。按照不同的输送媒介,离心泵的种类也变得纷繁复杂,常见的有防腐泵和清水泵两种。为了保证一定的使用年限,减少企业成本提高经济效益,就必须不定期对离心泵加强管理和维护。 (一)�。
一、离心泵的工作原理
图2-1所示为一个安装在管路上的离心泵。主要部件有叶轮1与泵壳2等。
具有若干弯曲叶片的叶轮安装在泵壳内,并紧固于泵轴3上。
泵壳中央的吸水口4与吸水管路5相连接,侧旁的排出口8与排出管路9相连接。
离心泵一般用电动机带动,在启动前需向壳内灌满被输送的液体。启动电动机后,泵轴带动叶轮一起旋转,充满叶片之间的液体也随着转动,在离心力的作用下,液体从叶轮中心被抛向外缘的过程中便获得了能量,使叶轮外缘的液体静压强提高,同时也增大了流速,一般可达15~25m/s,即液体的动能也有所增加。液体离开叶轮进入泵壳后,由于泵壳中流道逐渐加宽,液体的流速逐渐降低,又将一部分动能转变为静压能,使泵出口处液体的压强进一步提高,于是液体以较高的压强,从泵的排出口进入排出管路,输送至所需的场所。
当泵内液体从叶轮中心被抛向外缘时,在中心处形成了低压区,由于贮槽液面上方的压强大于泵吸入口处的压强,在压强差的作用下,液体便经吸入管路连续地被吸入泵内,以补充被排出液体的位置。只要叶轮不断地转动,液体便不断地被吸入和排出。由此可见,离心泵之所以能输送液体,主要是依靠高速旋转的叶轮。
液体在离心力的作用下获得了能量以提高压强。
离心泵启动时,如果泵壳与吸入管路内没有充满液体,则泵壳内存有空气,由于空气的密度远小于液体的密度,产生的离心力小,因而叶轮中心处所形成的低压不足以将贮槽内的液体吸入泵内,此时虽启动离心泵也不能输送液体,此种现象称为气缚,表示离心泵无自吸能力,所以启动前必须向壳体内灌满液体。若离心泵的吸入口位于吸液贮槽液面的上方,在吸入管路的进口处应装一单向底阀6和滤网7。
底阀是防止启动前所灌入的液体从泵内漏失,滤网可以阻拦液体中的固体物质被吸入而堵塞管道和泵壳。靠近泵出口处的排出管路上装有调节阀10,以供开车、停车及调节流量时使用。
图2-1 离心泵装置简图
1-叶轮;2-泵壳;3-泵轴;4-吸入口;5-吸入管;6-底阀;7-滤网;8-排出口;9-排出管;10-调节阀
二、离心泵的主要部件
离心泵最主要的部件为叶轮、泵壳与轴封装置,下面分别简述其结构和作用。
(1)叶轮 叶轮的作用是将原动机的机械能传给液体,使液体的静压能和动能均有所提高。
离心泵的叶轮如图2-2所示,叶轮内有6~12片弯曲的叶片1。图中(a)所示的叶片两侧有前盖板2及后盖板3的叶轮,称为闭式叶轮。液体从叶轮中央的入口进入后,经两盖板与叶片之间的流道流向叶轮外缘,在这过程中液体从旋转叶轮获得了能量,并由于叶片间流道的逐渐扩大,故也有一部分动能转变为静压能。
有些吸入口侧无前盖的叶轮,称为半闭式叶轮,如图中(b)所示。没有前、后盖板的叶轮,称为开式叶轮,如图中(c)所示,半闭式与开式叶轮可用于输送浆料或含有固体悬浮物的液体,因取消盖板后叶轮流道不容易堵塞,但也由于没有盖板,液体在叶片间运动时容易产生倒流,故效率也较低。
图2-2 离心泵的叶轮
(a)闭式;(b)半闭式;(c)开式
闭式或半闭式叶轮在工作时,有一部分离开叶轮的高压液体漏入叶轮与泵壳之间的两侧空腔中去,而叶轮前侧液体吸入口处为低压,故液体作用于叶轮前、后两侧的压力不等,便产生了指向叶轮吸入口方向的轴向推力,使叶轮向吸入口侧窜动,引起叶轮与泵壳接触处磨损,严重时造成泵的振动。为此,可在叶轮后盖板上钻一些小孔(见图2-3(a)中的1)。
这些小孔称为平衡孔,它的作用是使后盖板与泵壳之间的空腔中一部分高压液体漏到低压区,以减少叶轮两侧的压力差,从而起到平衡一部分轴向推力的作用,但同时也会降低泵的效率。平衡孔是离心泵中最简单的一种平衡轴向推力的方法。
按吸液方式的不同,叶轮还有单吸和双吸两种。单吸式叶轮的结构简单,如图2-3(a)所示,液体只能从叶轮一侧被吸入。
双吸式叶轮如图2-3(b)所示,液体可同时从叶轮两侧吸入。显然,双吸式叶轮具有较大的吸液能力,而且基本上可以消除轴向推力。
图2-3 吸液方式(a)单吸式;(b)双吸式
(2)泵壳离心泵的泵壳又称蜗壳,因壳内有一个截面逐渐扩大的蜗牛壳形通道,如图2-4的1所示。
叶轮在壳内顺着蜗形通道逐渐扩大的方向旋转,愈接近液体出口,通道截面积愈大。因此,液体从叶轮外缘以高速度被抛出后,沿泵壳的蜗牛形通道向排出口流动,流速便逐渐降低,减少了能量损失,且使部分动能有效地转变为静压能。所以泵壳不仅作为一个汇集由叶轮抛出液体的部件,而且本身又是一个转能装置。
为了减少液体直接进入蜗壳时的碰撞,在叶轮与泵壳之间有时还装有一个固定不动而带有叶片的圆盘。这个圆盘称为导轮,如图2-4中的3所示。导轮具有很多逐渐转向的流道,使高速液体流过时能均匀而缓和地将动能转变为静压能,从而减少能量损失。
图2-4 泵壳与导轮1-泵壳;2-叶轮;3-导轮
(3)轴封装置泵轴与泵壳之间的密封称为轴封。
轴封的作用是防止高压液体从泵壳内沿轴的四周漏出,或者防止外界空气以相反方向漏入泵壳内。常用的轴封装置有填料密封和机械密封两种。
普通离心泵所采用的轴封装置是填料函,俗称盘根箱,如图2-5所示。
图中1是和泵壳连在一起的填料函壳;2是软填料,一般为浸油或涂石墨的石棉绳;4是填料压盖,可用螺钉拧紧,使填料压紧在填料函壳与转轴之间,以达到密封的目的;5是内衬套,用来防止填料挤入泵内。由于泵壳与转轴接触处可能是泵内的低压区,为了更好地防止空气从填料函不严密处漏入泵内,故在填料函内装有液封圈3。如图2-6所示,液封圈是一个金属环,环上开了一些径向的小孔,通过填料函壳上的小管可以和泵的排出口相通,使泵内高压液体顺小管流入液封圈内,以防止空气漏入泵内,所流入的液体还起到润滑、冷却填料和轴的作用。
图2-5 填料函
1-填料函壳;2-软填料;3-液封圈;4-填料压盖;5-内衬套
图2-6 液封圈
对于输送酸、碱以及易燃、易爆、有毒的液体,密封的要求就比较高,既不允许漏入空气,又力求不让液体渗出。
近年来已广泛采用称为机械密封的轴封装置。它由一个装在转轴上的动环和另一个固定在泵壳上的静环所组成,两环的端面借弹簧力互相贴紧而作相对运动,起到了密封的作用,故又称为端面密封。图2-7是国产AX型机械密封装置的结构,该装置的左侧连接泵壳。
螺钉1把传动座2固定于转轴上。传动座内装有弹簧3、推环4、。
离心泵由吸入管、排出管和离心泵主体组成。离心泵主体分为转动部分和固定部分。
转动部分由电动机带动旋转,将能量传递给被输送的部分,主要包括叶轮和泵轴。
固定部分包括泵壳、导轮、密封装置等。叶轮是离心泵中使液体接受外加能量的部件。泵轴的作用是把电动机的能量传递给叶轮。泵壳是通道截面积逐渐扩大的蜗形壳体,它将液体限定在一定的空间里,并将液体大部分动能转化为静压能。
导轮是一组与叶轮旋转方向相适应,且固定于泵壳上的叶片。
下一篇:不锈钢多级离心泵国家标准是多少