发布时间:2023-04-03 点此:31次
选择泵主要看以下几个指标:
(1) 扬程:单位重量液体通过泵后所获得的能量。用H表示,单位为m。
(2) 流量:单位时间内泵提供的液体数量。
有体积流量Q,单位为m3/s。有质量流量G,单位为kg/s。
(3) 转速:泵 每分钟的转数。用n表示,单位为r/min。
(4) 轴功率:原动机传给泵轴上的功率。用P表示,单位为kW。
(5) 效率:泵的有用功率与轴功率的比值。
它是衡量泵在水力方面完善程度的一个指标。
扩展资料:
运用领域
在化工和石油部门的生产中,原料、半成品和成品大多是液体,而将原料制成半成品和成品,需要经过复杂的工艺过程,泵在这些过程中起到了输送液体和提供化学反应的压力流量的作用,此外,在很多装置中还用泵来调节温度。
在农业生产中,泵是主要的排灌机械。我国农村幅员广阔,每年农村都需要大量的泵,一般来说农用泵占泵总产量一半以上。
在矿业和冶金工业中,泵也是使用最多的设备。
矿井需要用泵排水,在选矿、冶炼和轧制过程中,需用泵来供水等。
在电力部门,核电站需要核主泵、二级泵、三级泵、热电厂需要大量的锅炉给水泵、冷凝水泵、油气混输泵、循环水泵和灰渣泵等。
在国防建设中,飞机襟翼、尾舵和起落架的调节、军舰和坦克炮塔的转动、潜艇的沉浮等都需要用泵。高压和有放射性的液体,有的还要求泵无任何泄漏等。
离心水泵主要由叶轮、泵体、泵盖、密封环、轴封装置、托架和平衡装置等组成。衡量水泵性能的技术参数有流量、吸程、扬程、轴功率、水功率、效率等;对叶片式水泵来说,还有转速和比转数。
即水泵的吸水高度。指由泵体中心至水源水平面的垂直距离,利用泵体内真空度抽吸水流时,容许吸程一般不大于7.5米。即水泵的提水高度。
指单位重量的水通过水泵后,能量增加的数值。一般将抽水站进、出水池水面的高度差称为实际扬程;加上抽水站管路及其附件(如底阀、弯头、闸阀等)的水头损失称为总扬程。水泵铭牌上所标的扬程,是指水泵在一定转速条件下效率最高时的扬程,是实际扬程和损失扬程之和。
指水泵在单位时间内输水的数量,也称输水量。常用的流量单位有升/秒、米3/秒、米3/小时、千克/秒、吨/小时等几种。
指动力机械输送给水泵轴的功率,即水泵的输入功率。
又称有效功率。指单位时间内水泵用于输水的实际功率,即水泵的输出功率。水功率与轴功率的比值即为水泵效率,通常以百分数表示。
它是用来衡量动力机械传送给水泵的能量利用情况的指标,反映出水泵效能的优劣。表示水泵特性的综合性参数。通常用nS来表示。
nS=3.65nQ1/2H-3/4。式中n为转速(转/分),Q为流量(米3/秒),对双吸式水泵应以Q/2代入式内;H为扬程(米)。水泵的比转数与水泵的各项参数密切相关。一般离心泵的比转数较小,因其叶轮直径大,出口宽度窄,扬程高而流量小;而轴流泵的比转数较大,因而扬程低而流量大;混流泵则介于两者之间。
常用离心泵的比转数为30~300,混流泵为300~600,轴流泵为500~1800。两台几何相似的叶片泵,其比转数必然相等。因而可以利用几何相似模型的试验数据来预测大型泵的性能参数。
一、离心泵的工作原理
图2-1所示为一个安装在管路上的离心泵。主要部件有叶轮1与泵壳2等。
具有若干弯曲叶片的叶轮安装在泵壳内,并紧固于泵轴3上。
泵壳中央的吸水口4与吸水管路5相连接,侧旁的排出口8与排出管路9相连接。
离心泵一般用电动机带动,在启动前需向壳内灌满被输送的液体。启动电动机后,泵轴带动叶轮一起旋转,充满叶片之间的液体也随着转动,在离心力的作用下,液体从叶轮中心被抛向外缘的过程中便获得了能量,使叶轮外缘的液体静压强提高,同时也增大了流速,一般可达15~25m/s,即液体的动能也有所增加。液体离开叶轮进入泵壳后,由于泵壳中流道逐渐加宽,液体的流速逐渐降低,又将一部分动能转变为静压能,使泵出口处液体的压强进一步提高,于是液体以较高的压强,从泵的排出口进入排出管路,输送至所需的场所。
当泵内液体从叶轮中心被抛向外缘时,在中心处形成了低压区,由于贮槽液面上方的压强大于泵吸入口处的压强,在压强差的作用下,液体便经吸入管路连续地被吸入泵内,以补充被排出液体的位置。只要叶轮不断地转动,液体便不断地被吸入和排出。由此可见,离心泵之所以能输送液体,主要是依靠高速旋转的叶轮。
液体在离心力的作用下获得了能量以提高压强。
离心泵启动时,如果泵壳与吸入管路内没有充满液体,则泵壳内存有空气,由于空气的密度远小于液体的密度,产生的离心力小,因而叶轮中心处所形成的低压不足以将贮槽内的液体吸入泵内,此时虽启动离心泵也不能输送液体,此种现象称为气缚,表示离心泵无自吸能力,所以启动前必须向壳体内灌满液体。若离心泵的吸入口位于吸液贮槽液面的上方,在吸入管路的进口处应装一单向底阀6和滤网7。
底阀是防止启动前所灌入的液体从泵内漏失,滤网可以阻拦液体中的固体物质被吸入而堵塞管道和泵壳。靠近泵出口处的排出管路上装有调节阀10,以供开车、停车及调节流量时使用。
图2-1 离心泵装置简图
1-叶轮;2-泵壳;3-泵轴;4-吸入口;5-吸入管;6-底阀;7-滤网;8-排出口;9-排出管;10-调节阀
二、离心泵的主要部件
离心泵最主要的部件为叶轮、泵壳与轴封装置,下面分别简述其结构和作用。
(1)叶轮 叶轮的作用是将原动机的机械能传给液体,使液体的静压能和动能均有所提高。
离心泵的叶轮如图2-2所示,叶轮内有6~12片弯曲的叶片1。图中(a)所示的叶片两侧有前盖板2及后盖板3的叶轮,称为闭式叶轮。液体从叶轮中央的入口进入后,经两盖板与叶片之间的流道流向叶轮外缘,在这过程中液体从旋转叶轮获得了能量,并由于叶片间流道的逐渐扩大,故也有一部分动能转变为静压能。
有些吸入口侧无前盖的叶轮,称为半闭式叶轮,如图中(b)所示。没有前、后盖板的叶轮,称为开式叶轮,如图中(c)所示,半闭式与开式叶轮可用于输送浆料或含有固体悬浮物的液体,因取消盖板后叶轮流道不容易堵塞,但也由于没有盖板,液体在叶片间运动时容易产生倒流,故效率也较低。
图2-2 离心泵的叶轮
(a)闭式;(b)半闭式;(c)开式
闭式或半闭式叶轮在工作时,有一部分离开叶轮的高压液体漏入叶轮与泵壳之间的两侧空腔中去,而叶轮前侧液体吸入口处为低压,故液体作用于叶轮前、后两侧的压力不等,便产生了指向叶轮吸入口方向的轴向推力,使叶轮向吸入口侧窜动,引起叶轮与泵壳接触处磨损,严重时造成泵的振动。为此,可在叶轮后盖板上钻一些小孔(见图2-3(a)中的1)。
这些小孔称为平衡孔,它的作用是使后盖板与泵壳之间的空腔中一部分高压液体漏到低压区,以减少叶轮两侧的压力差,从而起到平衡一部分轴向推力的作用,但同时也会降低泵的效率。平衡孔是离心泵中最简单的一种平衡轴向推力的方法。
按吸液方式的不同,叶轮还有单吸和双吸两种。单吸式叶轮的结构简单,如图2-3(a)所示,液体只能从叶轮一侧被吸入。
双吸式叶轮如图2-3(b)所示,液体可同时从叶轮两侧吸入。显然,双吸式叶轮具有较大的吸液能力,而且基本上可以消除轴向推力。
图2-3 吸液方式(a)单吸式;(b)双吸式
(2)泵壳离心泵的泵壳又称蜗壳,因壳内有一个截面逐渐扩大的蜗牛壳形通道,如图2-4的1所示。
叶轮在壳内顺着蜗形通道逐渐扩大的方向旋转,愈接近液体出口,通道截面积愈大。因此,液体从叶轮外缘以高速度被抛出后,沿泵壳的蜗牛形通道向排出口流动,流速便逐渐降低,减少了能量损失,且使部分动能有效地转变为静压能。所以泵壳不仅作为一个汇集由叶轮抛出液体的部件,而且本身又是一个转能装置。
为了减少液体直接进入蜗壳时的碰撞,在叶轮与泵壳之间有时还装有一个固定不动而带有叶片的圆盘。这个圆盘称为导轮,如图2-4中的3所示。导轮具有很多逐渐转向的流道,使高速液体流过时能均匀而缓和地将动能转变为静压能,从而减少能量损失。
图2-4 泵壳与导轮1-泵壳;2-叶轮;3-导轮
(3)轴封装置泵轴与泵壳之间的密封称为轴封。
轴封的作用是防止高压液体从泵壳内沿轴的四周漏出,或者防止外界空气以相反方向漏入泵壳内。常用的轴封装置有填料密封和机械密封两种。
普通离心泵所采用的轴封装置是填料函,俗称盘根箱,如图2-5所示。
图中1是和泵壳连在一起的填料函壳;2是软填料,一般为浸油或涂石墨的石棉绳;4是填料压盖,可用螺钉拧紧,使填料压紧在填料函壳与转轴之间,以达到密封的目的;5是内衬套,用来防止填料挤入泵内。由于泵壳与转轴接触处可能是泵内的低压区,为了更好地防止空气从填料函不严密处漏入泵内,故在填料函内装有液封圈3。如图2-6所示,液封圈是一个金属环,环上开了一些径向的小孔,通过填料函壳上的小管可以和泵的排出口相通,使泵内高压液体顺小管流入液封圈内,以防止空气漏入泵内,所流入的液体还起到润滑、冷却填料和轴的作用。
图2-5 填料函
1-填料函壳;2-软填料;3-液封圈;4-填料压盖;5-内衬套
图2-6 液封圈
对于输送酸、碱以及易燃、易爆、有毒的液体,密封的要求就比较高,既不允许漏入空气,又力求不让液体渗出。
近年来已广泛采用称为机械密封的轴封装置。它由一个装在转轴上的动环和另一个固定在泵壳上的静环所组成,两环的端面借弹簧力互相贴紧而作相对运动,起到了密封的作用,故又称为端面密封。图2-7是国产AX型机械密封装置的结构,该装置的左侧连接泵壳。
螺钉1把传动座2固定于转轴上。传动座内装有弹簧3、推环4、。
为了正确地选择和使用离心泵,就必须熟悉其工作特性和它们之间的相互关系。反映离心泵工作特性的参数称为性能参数,主要有转速、流量、压头、轴功率和效率、气蚀余量等。
离心泵一般由电机带动,因而转速是固定的,其性能参数通常在离心泵的铭牌或样本说明书中标明,以供选用时参考。
上一篇:化工泵选型常用的几种型号
下一篇: 离心泵